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Abstract 

A new procedure (GENLOIS) is presented for generating trees or certain classes 
of trees such as 4-trees (graphs representing alkanes), identity trees, homeomorphical 
irreducible trees, rooted trees, trees labelled on a certain vertex (primary, secondary, 
tertiary, etc.). The present method differs from previous procedures by differentiating 
among the vertices of a given parent graph by means of local vertex invariants (LOVIs). 
New graphs are efficiently generated by adding points and/or edges only to nonequivalent 
vertices of the patent graph. Redundant generation of graphs is minimized and checked 
by means of highly discriminating, recently devised topological indices based either on 
LOVIs or on the information content of LOVIs. All trees on N + 1 (N + 1 < 17) points 
could thus be generated from the complete set of trees on N points. A unique cooperative 
labelling for trees results as a consequence of the generation scheme. This labelling can 
be translated into a code for which canonical rules were recently stated by A.T. Balaban. 
This coding appears to be one of the best procedures for encoding, retrieving or ordering 
the molecular structure of trees (or alkanes). 

1. Introduction 

The problem of enumerating (counting) and generating (displaying) structures 
(isomers) has been preoccupying mathematicians and chemists for over a century. 
The large number of papers [1-11],  reviews [12, 13] and books [14-18] devoted 
to this subject emphasizes its importance both for chemistry and for graph tbeory. 

We are aware that what we are about to describe here for acyclic structures 
has already been done elegantly and efficiently by other groups [4,7, 10, 11], so that 
the numerical results presented in the tables are not new. However, our method and 
the derived algorithm are new and have a generality which makes our approach 
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attractive for new applications. The recently described generation of carbon skeletons 
by Hendrickson and Parks [11], although much broader in scope, encouraged us to 
present our approach to this problem, which we believe to be more efficient for 
chemically relevant species with a somewhat limited number of atoms. The theoretical 
basis developed by Kvasni~ka and Pospichal [10] for the cooperative indexing of 
structures could be put to use in our algorithm. Actually in the same paper, the latter 
authors have addressed the problem of reconstructing graphs from topological indices. 
We present here an extension to these prcvious studies. 

We started this work some years ago in connection with topological indices 
(TIs) and the study of their degeneracy, i.e. which are the smallest nonequivalent 
graphs for which the same value is obtained for a certain Tl. For this purpose, we 
needed a data base of structures on which to run routinely calculations for various 
TIs. 

The procedures described at that time in the literature [4-8] were not adaptable 
to our computing facilities. We classify the existing procedures for generating 
structures into budding algorithms which grow new structures by appending vertices 
and/or edges to previously generated structures, and coding algorithms which generate 
computer codes representing structures. 

We decided to devise a "budding" program (written in BASlC and which could 
be run on a Z-8080, 64 KB RAM) adapted to our very narrow scope. The basic idea 
of this program is the same as that of the SKEL_GROW program of Hendrickson 
and Parks [11] or that of TrinajstiÜs generating algorithm of polyhexes [9], namely 
to generate structures on N + 1 vertices (hexes) from the previously generated 
structures of N vertices (hexes). The disadvantage pointed out by Hendrickson and 
Parks for this approach is that it requires large computer times and storage, derived 
from the need to compare a newly generated structure with all the previously 
generated ones. These disadvantages can be partially avoided by storing the previously 
generated structures in the computer memory as a single number representing the 
Tl whose degeneracy needs to be tested. Since the total number of structures on 
N + 1 vertices of a given type (alkanes, primary alcohols, etc.) is known [14, 19], 
we generated these from the previously corrected generated structures on N vertices. 
If the numbers obtained by our approach matched the known ones, then two conditions 
must have been simultaneously fulfilled: 

(i) all the TIs for the newly generated structures must have been distinct, i.e. 
the respective Tl is not degenerate for graphs with N + 1 vertices; and 

(ii) at the local, vertex level, for all the structures on N vertices, the nonequivalent 
vertices must have been correctly distinguished so that into each nonequivalent 
position, a new bond could be added in order to link the (N + 1)th vertex of a newly 
generated structure. 

If the numbers of structures did not match, then the generation scheme must 
have been at fault, a degeneracy must have been found and this could be due to the 
non-fulfillment of the first, or second, or both of the above conditions. By retracing 
the generation scheme, one could easily find the missing isomer and one could 
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verify which of these conditions was not fulfilled. In a previous paper [20], we 
termed the degeneracy contradicting the first condition as "'accidental" degeneracy, 
or operational degeneracy, i.e. the operations of the "global" TI were not sufficiently 
complex as to discriminate all the structures on N vertices. The degeneracy contradicting 
the second condition was termed assignment degeneracy, meaning that to nonequivalent 
vertices, equal local vertex invariants (LOVIs) were assigned. 

The success in discriminating structures of some of our newly devised topological 
indices (based either on the information on distances [21], or on LOVIs [20]), as 
weil as the ease with which nonequivalent vertices are distinguished by means of 
the local invariant set (LOIS) of LOVIs, makes from the blending of these two 
features an efficient graph generator which is described in the present paper. To 
ensure self-consistency, the LOVIs and TIs on which the generation algorithm is 
based will be briefly reviewed in the third section of this paper. Our program (which 
we named GENLOIS) is described in the next section, together with the computing 
times and the numerical results for acyclic structures. 

The general applicability, however, is limited by the fulfillment of the two 
criteria mentioned above. For chemical relevant species for which all congeners 
need to be known, or accessed, and where N, the number of atoms, cannot be too 
large, this scheme functions well, as we will try to demonstrate. 

Another point needs to be stressed and it sterns from our more heuristical 
approach to chemical related graph-theoretical problems. In the generation of 4- 
trees (alkane bydrogen-depleted graphs), since our procedure starts from methane 
and produces higher alkanes, these are produced in a given order, which is specific 
to the generation algorithm, i.e. it is not imposed by any exterior conditions. What 
is more interesting is that a labelling of vertices results for each isomer. This 
labelling resembles the Morgan "orbit" numerotation schemes [19], as well as the 
system of  coding trees due to Neville [22]; also, it is cooperative in the sense 
defined by Kvasni~ka and Pospichal [ 10]. Again, this is done without exterior rules. 
This labelling is easily translated into an N -  3 tuple which may be used for coding 
alkanes, as A.T. Balaban has recently shown [23]. This code, which we will term 
LINKCODE, will be discussed in section 5 of this paper. 

As a consequence of the cooperative indexing, GENLOIS generates the structures 
in the order of increasing codes (lexicographic increasing order). The astonishing 
fact is that these codes also represent the minimum code for a given isomer and are 
thus canonical. A theorem is given to prove that this statement is valid as long as 
the TIs and LOVIs are discriminating correctly structures and vertices, respectively. 

An alternative procedure to the "budding" scheme that is used in our approach 
is the "coding" procedüre which led to the most efficient program for generating 
acyclic structures, due to Trinajsti6 and co-workers [7]. Also, the program SKEL_GEN 
of Hendrickson and Parks [11], which generates carbon skeletons, uses a "coding" 
approach which is actually more efficient than the one used in the SKEL_GROW 
program. This procedure consists in a combinatorial generation of  codes (N-tuples 
[7], upper [11], or lower [10] triangles of the adjacency matrix) and ordering these 
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codes into a "reverse or direct lexicographic order". If a produced code does not 
represent a connected graph or after permutation of the labels, it does not represent 
a minimum (maximum) code, that structure is rejected as either not relevant or as 
already in the list of generated structures. Since each code is generated only once 
(forward generation) and the comparison of a new structure with the previously 
generated ortes is avoided, this scheme is faster and is less memory consuming. 
Various schemes have also been devised to drastically reduce the permutation of 
the codes in order to eliminate irrelevant ones. The efficiency of the Trinajsti6 
algorithm resides in the generation of exactly the set of minimum N-tuples, and this 
has allowed the generation of structures with up to 80 vertices [7, 17]. 

Having to hand a generation algorithm which apparently functions well and 
which is based on the budding sequence, not on the approach of coding the structures, 
we extract a code from the generated structures. This code, applied to alkanes, was 
disclosed earlier by A.T. Balaban [23] and it resulted from the computer representation 
of the generated structures. In addition, the generation algorithm produces structures 
in a strict order. We do not argue as this being the ordering (of alkanes, for instance) 
but we compare it, in section 6, to other existing ordering procedures. 

The ordering of alkanes is somewhat similar to that devised by Trinajsti6 and 
co-workers [7] (the inverse lexicographic order) in the respect that the most branched 
alkane (or the star tree) is generated first, while the linear N-alkane (tree) is generated 
last. We will point out the differences between these two ordering procedures, 
differences which increase as N increases. The coding of alkanes and their ordering 
according to the increase of our canonical code is actually independent of the 
generation algorithm and may be regarded as a hierarchical ordering scheme for all 
alkanes according to an intrinsic property that is related to their branching. 

The generation algorithm is shown to be inferior in speed to the Trinajsti6 
generation algorithm [7], but much faster than the programs SKEL_GEN and 
SKEL_GROW of Hendrickson and Parks [11] used for generating carbon skeletons. 

An interesting feature of the GENLOIS algorithm is that it connects three 
important and much debated problems of graph theory: stmcture generation, canonical 
coding, and ordering of structures by means of a unique criterion. The aim of  the 
present paper is to show that for chemical relevant species, all these problems can 
be efficiently solved with the aid of TIs. 

For graph-theoretical terms and their chemical equivalents, the reader is referred 
to available reviews of chemical applications of graph theory [12-16 ,24-28] .  

2. Generation ofacyclic chemical structures with the aid of locai vertex invariants 
and topological indices 

The direct enumerations of graphs are methods of counting graphs simultaneously 
with their generation. In the following description, a direct "budding" enumeration 
procedure is presented which runs efficiently even on personal computers. We limit 
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our present discussion to acyclic structures; the results for cyclic structures, which 
can also be accessed with the present algorithm, will be given separately. 

Our approach for generating structures is very similar to the "by hand" or 
intuitive way of producing new isomers from a given set of  inferior homologous 
isomers. Therefore, it is instructive to explicit (see fig. 1) the generation from the 

1 2 

3 -_ 5 . . . . . . ._ 

6 7 8 9 tO 1! 

Fig. 1. A "budding" sequence for generating acyclic strucmres. 

two butanes 1 and 2 of the three pentanes 3 - 5 ,  and from these of the five hexane 
isomers 7-11 .  This is a special case of the generation of 4-trees in which the degree 
of vertices, i.e. the valency of a carbon atom, cannot be larger than four. We should 
mention that addition of a new edge to the vertex of degree four in 3 (quaternary 
carbon labelled 1) gives rise to a 5-tree (6) and is permitted in a generation algorithm 
only if general trees are desired. 

The set of structures on N vertices is processed sequentially. Each such graph 
is denoted as a patent (predecessor) graph (e.g. butane and pentane isomers in 
fig. 1) and generates a subset of "daughter" (successor) graphs with N + 1 vertices 
(e.g. pentanes and hexanes, respectively, in fig. 1) by connecting (or budding) a new 
vertex to each of (or from) the vertices in the parent graph. 

The butanes 1 and 2 can be budded to eight structures with five vertices 
which represent the three pentanes 3 -5 .  In turn, from the latter, fifteen newly 
generated structures are obtained, representing the six isomers of hexane. The differences 
between the existing numbers of isomers and the generated ones is due to the fact 
that the same daughter graphs can be accessed from different parent graphs or 
simply, because from the same parent graph, topologically equivalent vertices were 
budded. Therefore, the successor generation contains redundant structures and their 
number increases factorially as N increases. 
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In order to generate new isomers more efficiently, two rules can be stated for 
adding a new vertex. Firstly, in order to generate acyclic structures, a new edge 
should be added only to non-equivalent vertices of the parent graph. Thus, from 3 
only two new structures (6 and 7) should be generated; vertices labelled 2, 3, 4 and 
5 are equivalent and so their budding leads to the same hexane isomer, namely 7. 
Taking into account the equivalence classes of vertices in 3 - 5 ,  only eight new 
structures (corresponding to the eight arrows in fig. 1) need now to be generated. 
Secondly, one observes that hexanes 7, 9 and 10 can be generated, each from two 
parent pentanes. This duplicate generation could be avoided, or at least minimized, 
if only the "forward" generation is allowed. By "forward" generation, we imply a 
pre-existent order of the three parent pentanes (as in fig. 1) which gives rise to an 
imposed order of the newly generated hexanes. Thus, only five new structures need 
now be generated (this "forward" generation is indicated by full arrows in fig. 1), 
if the "backward" generation (dotted arrows) is prohibited. 

We shall first illustrate how, by means of local vertex invariants, one can 
distinguish the equivalence classes of vertices in a parent graph, and then how to 
code and order trees and thus avoid as much as possible the "backward" redundant 
generation of structures. The problem of storing newly generated structures for 
chemically relevant species can be done in the main memory by means of a highly 
discriminant topological index V [21], or by means of TIs based on local vertex 
invariants [20], which we discuss in section 3. 

3. Local vertex invariants (LOVIs) and topological indices (TIs) 

We have recenüy presented an approach [20] which permits an easy way to 
assign to vertices of a given graph local vertex invariants (LOVIs). This approach 
is similar to the one proposed by Golender et al. [29] for flow graphs. It has the 
advantage of a very low assignment degeneracy, i.e. distinct LOVIs are obtained 
for nonequivalent vertices and different sets of ordered LOVIs are usually obtained 
for nonisomorphic graphs. Only some special cases of polycyclic graphs, although 
nonisomorphic, give rise to the same set of ordered LOVIs. 

On the other hand, we have found no example of  an acyclic graph with less 
than seventeen vertices that, for nonequivalent vertices, has the same LOVIs. Thus, 
these vertex invariants are well suited for our present purpose, namely to discriminate 
the equivalence classes of vertices in a given parent graph. 

For a graph of N vertices, a local invariant set (LOIS) X of LOVIs, xi 
(i = 1, 2 . . . . .  N), is obtained as the solution set of a system of linear equations: 

Q . X = R ,  (1) 

where Q is a square N × N matrix obtained from the adjacency matrix A or distance 
matrix D by substituting its diagonal elements aii, and R is a column vector with 
N components. Several types ofLOIS were given in the initial paper [20] and others 
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have been calculated. The type of a LOIS can be designated by a triad APR, where 
P is the column vector of components Pi which replace the diagonal elements aii 
of matrix A, thus forming matrix Q. System (1) becomes 

( A a +  1 • P )  • X = R ,  (2) 

where a is a power of  the adjacency matrix (or distance matrix) and 1 is the unit 
matrix. 

The column vectors P and R reflect certain chosen properties which can be 
topological, such as the vertex degrees V, the distance sums S, the number of 
vertices in the graph N (i.e. a constant) or chemical, such as the atomic number Z, 
atomic mass M (to distinguish among isotopic species), ionic or atomic radii, 
ionization potential, electronegativity of the respective atoms, etc. 

For out  present purpose, we used two such LOIS, namely AZV and DrZV, 
obtained by replacing the diagonal elements of the adjacency matrix and reciprocal 
distance matrix [30], respectively, with the atomic number Z. The free term vector 
R in (1) is represented by V, namely the set of vertex degrees (the valency set of 
the respective atoms). In the present case, since only vertices of one type are present 
(we will be dealing with unlabelled trees, or with trees with vertices of the same 
colour), Z will have the same constant for all N vertices, i.e. 6 (the atomic number 
of carbon) as an extension from alkane graphs to trees. It has been shown [20] that 
heteroatom substitution, i.e. a different Zi for a given vertex i, affects markedly the 
value of respective LOVI and those of neighbouring vertices, while remote vertices 
remain unaffected. In this way, heteroatoms (of labelling or "vertex colouring") can 
be easily taken into account. 

Figures 2 and 3 present the procedure for obtaining the AZV and WZV 
LOIS, respectively, for the pentane isomers 1 -3 ,  the numbering of  vertices being 
unimportant at this stage. 

We used the reciprocal distance matrix D r (instead of  D, which has the same 
information content) because the numerical methods we employed for solving linear 
systems of  equations converge rapidly to steady solutions if the diagonal terms are 
much larger than all other terms. The D r matrix [30] is obtained by replacing all 
the distances dij between vertices i and j in the distance matfix D, with their 
reciprocals, i.e. 

drij = 1/dlj (i ;~ j ) .  (3) 

One notes that due to the mode of obtaining the LOVIs, equal LOVIs are 
necessarily assigned to equivalent vertices. On the other hand, it is not readily 
apparent whether nonequivalent vertices will be assigned distinct LOVIs. This 
brings us to the question which actually started the computational work described 
in the present paper: how weil are nonequivalent vertices differentiated in the 
LOIS? 
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= 1  

+ 6 x  s = 1 

xl = 0 .4281  
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x 3 = 0 .0953  
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x 5 = 0 .1265 

x I = 0 .2424  

xz = 0 .2727  

x3 = 0 .2727  

x4 = 0 .1212  

x 5 = 0 .1212  

Fig. 2. Ob ta in ing  the AZV-LOVIs for p e n t a n e s  3 - 5 .  

3.1. D I S C R I M I N A T I O N  O F  T O P O L O G I C A L  N O N E Q U I V A L E N T  V E R T I C E S  W I T H  L O C A L  

V E R T E X  I N V A R I A N T S  (LOVIs )  

The discrimination of nonequivalent vertices is important for many Computational 
applications of chemical graph theory. To list a few: 

(i) calculation of the expected number of  signals in the 13C-NMR-spectrum 
for a given compound; 

(ii) assessing the "topological" influence of a substitution at a given position 
with a labelled atom, a heteroatom, or a substituent, at various other positions in 
a molecule; 

(iii) different enumeration problems such as trees, identity trees, rooted trees, 
rooted trees on a specified vertex, identity trees (i.e. trees in which all vertices are 
topologically distinct), homeomorphically irreducible trees (i.e. trees with no vertex 
of degree two), or any desired combination. An example of such a "desired" combination 
might be the search for identity 4-trees (alkanes) with at least one quatemary and 
two tertiary vertices. 

Application (i) has recently received attention in the literature [31] and a 
correlation between the value of the chemical shift and the magnitude of the LOVI 
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1 1 _ +6x2 + : x 3 +  x4 + : x 5 - 2  x2=0 .2538  

1 +½x2 + 6x3+ :x, ,  + x 5 = 2  x3=0.2538  

l 1 = 1 x4 0.0871 + x2 + : x s +  6x4 + ä x  5 = 

+ X2 + I X 3  + l : x4  + 6x5=1  x5=0.0871 

Fig. 3. Obtaining the DrZV-LOVIs for pentanes 3 -5 .  

is to be expected. In other words, a special LOIS could be tailored so as to give 
a good correlation for a certain class of compounds. This semi-empirical LOIS 
remains to be devised. 

To illustrate application (il), the AZV-LOVIs for the smallest identity alkane 
graph (the heptane 12) are given in fig. 4 together with those of the corresponding 
aza- and bora-analogues. An inspection of the numerical values of the AZV-LOVIs 
in fig. 4 shows that a large deviation from the values in the parent (unsubstituted) 
compound 12 occurs in the heterocyclic analogues only if the vertices represent the 
point of  substitution. A somewhat smaller deviation is encountered for the adjacent 
vertices, while remote vertices have practically the same LOVIs as the parent 
graph 12. 

Ammonium cations or borate anions (if tetracoordinated heteroatoms are 
allowed) are also differentiated from the carbon analogues, as shown in fig. 5 for 
the undecane 13. 

If isotopic labelling of alkanes is to be considered, a different LOIS can be 
constructed so that the mass differences between isotopes are taken into account. 
Such a LOIS is the analogous AMV-LOIS, where M stands for the atomic mass 
which replaCes the diagonal elements in the adjacency matrix. 
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N~ 
.2451 .2366 .1210 
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.1259 I. 4064 .2852 

N~ 
B • 1191 

Fig. 4. AZV-LOVIs for the identity heptane 
12 and for its aza- and bora-analogues. 
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Fig. 5. AZV-LOVIs for undecane 13 and the 
corresponding ammonium cation and borate anion. 

Regarding application (iii) related to different enumeration problems, we 
shall present in greater detail the results obtained with AZV and DrZV LOISs, on 
which the graph generator GENLOIS is based. 

3.2. DISCRIMINATION OF STRUCTURES W1TH TOPOLOGICAL INDICES (TIs) 

After differentiating the vertices by means of LOVIs, these values can be 
combined into a global index with a mathematical operation. This was done in a 
previous paper [20] with operations such as the simple addition of LOVIs, or more 
complex ones which took into account the molecular topology. One such example 
is the Randi4 formula [32], in which the summation of the reciprocal geometrical 
means of vertex degrees is done for all pairs of adjacent vertices. 

For discriminating structures in the present algorithm (GENLOIS), we used 
the TI named V, which was recently devised by A.T. Balaban [21]. It appears that 
no degeneracy is encountered for V for alkanes with less than 17 vertices. This 
index is calculated by applying the Randi6 formula 

v - q m  ~ , ( v ~ v j )  -~/2 (4) 
p + 1 i~j 

to local vertex invariants v~ which represent the local information on the magnitude 
of distances of vertex i to all other vertices in the graph. By analogy to the A.T. 
Balaban index J [33], in eq. (4) q represents the number of edges and /.t is the 
cyclomatic number of the graph. For trees, evidently q = N -  1 and # = 0. The 
invariants v,. are calculated by 
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Oi = si log2 s i -  ui, (5) 

where si are the distance sums (the sums over the rows of the D matrix), logE is 
the binary logarithm, and ui represent the mean local information on the magnitude 
of distances (in bits). The latter invariants ui are calculated using Shannon's formula 

J lOgE(j/si). (6) 
U i = - -  ~ .  S i 

J 

Bonchev and Trinajsti6 [34] have used Shannon's formula extensively for devising 
TIs. Information theoretic indices were reviewed in a book by Bonchev [28]. 

GENLOIS, using index V, correctly generated all alkanes with up to seventeen 
vertices and all trees with up to fifteen vertices. The algorithm calculates for each 
structure the global T1 (V in our case) and searches the list of TIs previously stored 
in an INDEX FILE. If for that structure V is not encountered in the INDEX FILE, 
then that structure was not previously found and its T1 is appended to the list (the 
T1 in INDEX FILE while its structure is stored by means of a code in a STRUCT 
FILE). The fact that only one number (albeit in double precision) is stored and 
compared makes the present approach quite efficient. However, we do not yet know 
if this index V still works for higher N values than those presented in the tables. 
By a constructive method, we have found graphs with eighteen vertices which 
present degeneracy for any Tl that is calculated by means of the distance vector 
[35], as is the case for V. Accordingly, the octadecanes will not be correctly generated. 
This might be circumvented by calculating two indexes (LOIS based and V, for 
example), followed by comparing and storing both numbers. 

4. Description of  the p r o g r a m  G E N L O I S  and results 

Figure 6 presents the block diagram of the program and a brief description 
of these blocks follows. 

The program starts by asking in Block 1 if there exist previously generated 
structures with N vertices stored by means of their LINKCODES (vide infra) in a 
STRUCT FILE. If this is not the case, N is set to three and propane is assigned as 
the only existing graph. If a STRUCT FILE exists, its name and the number of 
structures on N vertices listed in that file have to be specified. Also, the program 
asks if trees are desired or the search is limited to 4-trees (alkanes). 

In Block 2, the following counters are initialized: 

NT - number of trees/alkanes 
NR - number of rooted trees/alkanes 
NR1 - number of trees/alkanes with a primary root 
NR E - number of trees/alkanes with a secondary root 
NR3 - number of trees/alkanes with a tertiary root 
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Fig. 6. Block diagram of GENLOIS. 

NR 4 - number of  trees/alkanes with a quatemary root 
NR» - number of  trees/alkanes with a pentenary root 
NR 6 - number of  trees/alkanes with a sextemary mot  
NID - number of  identity trees 
NIH - number of homeomorphically irreducible trees. 

In Block 3, the program starts to process sequentially each of  the stored 
graphs on N points from the S T R U C r _ N  FILE. Each structure is read, and its serial 
number and its LINKCODE are printed. Then the adjacency, distance or reciprocal 
distance matrices are calculated. The desired LOVIs (AZV or Drzv) are then computed 
(in double precision) with the aid of  a Gauss-Seide l  subroutine (GS) which solves 
iteratively systems of  linear equations. 

In Block 4, the distinct LOVIs are identified, counted (a) and sorted according 
to the vertex degrees (al on primary vertices, a2 on secondary, etc.) in order to 
increase the counters as follows: 
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N R = N R + a ;  N R I = N R I + a ~ ;  N R 2 = N R 2 + a 2  . . . .  

If the investigated parent graph has a = N, then it is an identity tree and its 
serial number is stored in an IDENT FILE. If it has no vertices of  degree two 
(a  z = 0), then the serial numher of  that graph is stored in a HIG FILE as being a 
homeo-morphically irreducible parent graph. 

Block 5 eliminates from the list of  topological distinct vertices those of  
degree higher than three (a4 . . . .  ), if only alkanes are desired. 

In Block 6, into each position for which a distinct LOVI exists, a new vertex 
is added and the desired TIs (either V and/or LOIS-based TIs) are now calculated 
with the aid of the subroutine INDEXV and/or the same subroutine GS (but for a 
structure on N + 1 vertices). 

In Block 7, the TI obtained above is compared to previously calculated values 
for the structures on N + 1 vertices stored in an INDEX FILE. If an equal value is 
found (i.e. that structure was generated previously), an asterisk " , "  is printed, and 
a new vertex is added in Block 6, in the next nonequivalent position. 

If the TI is distinct from all previous values, Block 8 prints a stike "!" ,  stores 
the TI at the end of the INDEX FILE and the LINKCODE corresponding to its 
structure, at the end of  STRUCT_N + 1 FILE, and increments NT. 

In Block 9, if not all the nonequivalent (a) positions were inspected for the 
parent graph currently under investigation, the next position is budded in Block 6. 
If all positions were inspected, the next parent structure in the STRUCT_N FILE 
at Block 3 is accessed. Block 10 ensures that all the parent graphs in the STRUCT_N 
FILE are investigated, after which Block 11 outputs the counters, the CPU time, and 
the names of the newly generated STRUCT_N + 1 FILE and INDEX FILE, thus 
ending the program. 

Table 1 presents the number of alkanes and labelled alkanes on certain vertices 
obtained with the program GENLOIS, as well as the computing times for a personal 
286-AT computer equipped with a 16 MHz clock. Table 2 similarly presents the 
computing times and the number of trees obtained with the same program by 
allowing vertices of  degree larger than three to be budded. The numbers fully agree 
with those found by other generation and/or enumeration schemes [14, 17], and 
show that this approach functions well for alkanes with less than 17 atoms and for 
trees with less than 16 vertices. 

The number of  redundant structures generated (i.e. of  " , " ) ,  as seen in the 
tables, is very low when compared to other recent approaches [ 11 ]. As N increases, 
the number of " , "  decreases steadily from about 25% of  all structures generated 
from pentanes, is about 11% for hexadecanes, and 13% for trees with fifteen vertices. 
The reason for this low redundancy lies in miminizing the "backward" generation 
by exploiting the LINKCODES of the structures. 

Figure 7 presents the alkanes C3-C9 with their LINKCODES, while fig. 8 
presents the trees with seven vertices, all structures being listed in the order of  their 
generation. It is evident from these figures that this ordering coincides with that of  
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1 2 3 ~ 

1,2 

I 

2,2 2,3 2,5 3,4 ~ 

1,2,2 1,2,3 1,2,6 2,2,3 2,3,4 

2,3,5 2,5,5 2,5,6 3,4,53 

1,2,2,2 1,2,2,3 1,2,2,6 1,2,3,4 1,2,3,6 

1,2,6,6 1,2,6,7 2,2,3,3 2,2,3,4 2,2,3,5 

2,2,3,7 2,3,4,5 2,3,5,5 2,3,5,6 2,3,5,7 

2,5,6,6 2,5,6,7 3,4,5,67 

Fig. 7. Caption on next page. 
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1,2,2,2,3 1,2,2,3,3 i,2,2,3,4 1,2,2,3,6 

1,2,2,3,8 1,2,2,6,6 1,2,2,6,7 1,2,2,6,8 

1,2,3,4,5 1,2,3,4,6 1,2,3,6,6 1,2,3,6,7 

1,2,3,6,8 1,2,6,6,6 1,2,6,6,7 1,2,6,7,7 

1,2,6,7,8 2,2,3,3,4 2,2,3,3,5 2,2,3,4,5 

2,2,3,4,7 2,2,3,5,7 2,2,3,7,7 2,2,3,7,8 

2,3,4,5,5 2,3,4,5,6 2,3,4,5,8 2,3,5,5,6 

2,3,5,5,7 2,3,5,6,7 2,3,5,7,7 2,3,5,7,8 

2,5,6,7,7 2,5,6,7,8 3,4,5,6,7 

Fig. 7. Alkanes C5-C 9 with their abridged LINKCODES. Vertices indicated 
by a dot are labelled 1. + For these alkanes, the first digits in the 
LINKCODE to be omitted were 1,1 and 2, not 1,1 and 1, as for the rest. 
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i,i,i 1,1,2 1,2,2 1,2,3 1,2,6 

2,2,3 2,3,4 2,3,5 2,5,5 2,5,6 

3,4,5 

Fig. 8. Trees with seven vertices with their abridged LINKCODES. 

the increase of the LINKCODES. Before returning to this ordering of structures by 
GENLOIS, a discussion of the LINKCODE will be made in section 5. 

5. Cooperative labelling of vertices (indexing) and canonical coding of structures 
by GENLOIS with the LINKCODE 

GENLOIS is a budding algorithm and as can be seen from the tables, it 
produces correctly acyclic structures. The alternative, coding type of algorithm used 
for the direct enumeration of structures produces computer codes which are translated 
into structures. We succeeded in reversing this translation process, namely, we 
extracted from the generated structures with GENLOIS their computer representation 
which can be viewed as a molecular code. We termed this code LINKCODE and 
A.T. Balaban has recently given canonical mies for it [23]. For alkanes, the LINKCODE 
fulfills all the requirements proposed by Read [36] so it qualifies as a "good" code. 
Trinajsti6 appreciates in his recent review on the role of graph theory in chemistry 
[13] that this LINKCODE is "the shortest available molecular code". We will detail 
here its derivation from the GENLOIS algorithm. Kvasni~ka and Pospichal [10] 
have elaborated the formalism for "cooperative indexing" (or labelling) of graphs 
and we shall make use of some of their theorems. 

Methane can be regarded as the initial parent graph of all structures accessed 
by GENLOIS. Accordingly, let us assume that the label 1 is attached to the unique 
carbon atom in methane. Ethane, its daughter graph, will be labelled 1-2, while 
propane will be cooperatively indexed as 3-1-2 (or 2-1-3). In cooperatively indexed 
graphs, if a vertex is assigned the label 1 and its degree is vl, then its neighbouring 
vertices receive the labels 2, 3 . . . . .  v~ + 1. If the vertex labelled 2 has degree ½,  
then its unlabelled adjacent vertices receive the labels Vl + 2 . . . . .  vl + ½,  and so 
on until all vertices in the graph have been labelled. It has been demonstrated [10] 
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that if a cooperatively indexed graph with N vertices is budded, then the daughter 
graph is also cooperatively indexed, the label of the new vertex being N + 1. This 
implies that all graphs accessed by GENLOIS can be viewed as cooperatively 
indexed graphs. Figure 9 presents three nonanes (which are also identity trees) 
1 4 -16  with their vertex labelling as resulting from their GENLOIS predecessors, 
by retracing the generation scheme. 

4 4 4 

6 
14 15 16 

~ o n ~ s ( ~ ~ '  ~ ° ~ ~ ~ 
x x 1 2 2 3 5 7 1  

2 3 4 5 6 7 8 9  

1 x x[2 3 5 6 7 I 
2 3 4 5 6 7 8 9  

11112,,,,,,,35781 

Fig. 9. Obtaining the LINKCODES and abridged LINK- 
CODES (boxed) for the three identity nonanes 14-16. 

In the list of bonds (also given in fig. 9), the LINKCODE is represented by 
the string of vertex labels in the lower row. For a tree with N vertices, this string 
of N -  1 vertex labels can easily be translated into the adjacency matrix: if the j t h  
entry in the LINKCODE is label i, then vertex i is adjacent to the vertex labelled 
j +  1. Since the first two bonds are always labelled 2-1-3, A.T. Balaban, in a 
previous paper [23], deleted (without loss of information) the first two labels 1 from 
the string of labels in the LINKCODE, thus using only N -  3 labels to uniquely 
describe a tree on N vertices. If two digit labels are to be avoided (in order to 
optimize the disk storage space), the same author proposed a "DIFFERCODE" [23] 
in which each digit represents the difference between two consecutive digits in the 
LINKCODE. Since LINKCODEs are easily reconstructed from the DIFFERCODEs 
(and vice versa), we shall restrict the present discussion to the latter and we shall 
delete the first three ones in the string of N -  1 labels. For the linear N-alkane 
(which has no vertex of degree 3), the first three digits we omitted from the 
LINKCODE were 1, 1 and 2. 

We define the LINKCODE as being canonical, i.e. it is the minimal string 
(in the lexicographical sense) of all the possible cooperative labellings of  a given 
graph. It was also demonstrated previously [10] that two graphs G and G'  are 
isomorphic iff their canonical (LINK) codes are identical and that if a graph is 
canonically indexed, then the indexing is cooperative. 

We were astonished by the fact that GENLOIS produces only LINKCODEs 
(i.e. canonical labelled trees) and that the trees are generated in the strict increasing 
order of  their LINKCODEs. We can demonstrate why and when this happens by 
means of a theorem based on the fact that in a LINKCODE the labels are in 
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increasing order. If this is not true, it can be demonstrated that either the respective 
tree is not cooperatively indexed or that a smaller string exists which must then be 
the LINKCODE. 

THEOREM 

In an algorithm that generates from the complete set of trees on N vertices 
(parent set), which are ordered in the increasing order of their LINKCODEs, the 
complete set of trees on N + 1 vertices (daughter set), the latter set will also be 
generated in the order of increasing LINKCODEs iff the procedures for discriminating 
nonequivalent vertices in the trees of the parent set and for discriminating the 
structures in the daughter set are faultless (i.e. free of assignment and operational 
degeneracies, respectively). 

Demonstration o f  the i f  part. From a certain patent graph with a certain 
minimum code (i.e. a LINKCODE), a daughter graph is generated by adding the 
N + 1 vertex to a certain position. The daughter LINKCODE will thus be formed 
by adding to the parent LINKCODE the label of the vertex to which the additional 
vertex is linked. Let us assume that the patent graph has the LINKCODE b l b 2 . . ,  bN 
and that one of its daughter graphs receives the code b l b 2 . . ,  bobN+l. We also 
assume that the generation procedure is faultless. Let us suppose that b l b E .  • • bNbN + 1 
is not the LINKCODE of that daughter graph (i.e. it is not the minimum code) and 
that is was not found, i.e. its TI was not in the TI list of previously generated trees 
on N + 1 vertices. Accordingly, a different (cooperative) labelling of vertices will 
produce a new, smaller code a~a2.. • aNaN + 1 which must be the LINKCODE of that 
daughter graph. In other words, there must exist an index k < N + 1 for which b i = a i 
(i = 1, k) and b i > a i ( i  = k + 1, N + 1). This implies that there must exist a parent 
tree having the LINKCODE a l a 2 . . ,  aN which must precede in the list the parent 
graph b lb2 . . ,  bN, since the parent set is ordered. Then by budding the latter tree 
at the vertex labelled aN, the same daughter tree should have been obtained earlier 
and accordingly its T1 must have been in the list of daughter graphs. This contradicts 
either the assumption that the parent set is ordered according to the increasing 
LINKCODEs, or that the distinction of the verfices in the trees of the parent set, 
and/or the distinction of the daughter trees was faultless. A fault could happen if 
vertex aN was not seen as distinct from other vertices in the parent tree and was 
not budded to give the daughter tree, i.e. the LOVIs must have been degenerate 
(assignment degeneracy). The other possibility for a faulty generation is that the 
global T1 is degenerate so that the daughter graph's T1 was found in the list, albeit 
it was not generated before, i.e. an operational degeneracy is encountered. 

Demonstration o f  the only ifpart. It is evident that if operational or assignment 
degeneracies are encountered, an incomplete daughter set will result. 

The generation of trees with N + 1 vertices from the set of previously generated 
trees or N vertices with the program GENLOIS in fact represents the generation of 
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rooted trees on N vertices, followed by the inspection of the roots which can be 
budded to produce the next generation of trees. We thought that we could improve 
the speed of the program if the backward generation could be avoided, and thus bud 
only the roots of the parent trees which led to previously not found trees on N + 1 
vertices. 

The above theorem enabled us to minimize the redundant graph generation 
by allowing only those vertices of the parent graph that have labels larger than the 
largest label encountered in the LINKCODE of the parent graph to be budded. In 
other words, if all vertices of the parent graph are allowed to be budded, the list 
of"stars and strikes" which allows a retracing of the generation scheme, has all the 
stars ( , )  in front (i.e. graphs which were generated previously and their TIs are 
already in the list) and the strikes (!), if any, at the end (i.e. new graphs whose TIs 
are appended to the list). It is obvious that if a vertex of the parent graph with a 
small label is budded, the newly formed daughter graph will have a LINKCODE 
which can be derived from another parent graph (with lower ranking and which 
must have been budded previously) so that the T1 of that daughter graph is already 
in the list and, accordingly, a " , "  is printed. By starting to bud only vertices with 
labels larger than the last label in the parent graph's LINKCODE, one cuts drastically 
the number of "*"s generated, while the computing times are shortened by a factor 
of about three. 

An alternative approach to reduce the redundant generation of graphs was 
tried, but it failed for alkanes with more than 13 vertices. This was done by adding 
the new vertex to the highest ranking vertices in the parent graph first, and storing 
all the new structures derived from a given parent graph. The string of ! and • is 
now produced backwards (! if any in front and the • at the end). If a structure is 
found to have been generated before (i.e. the first • is encountered), the inspection 
of that parent graph is abandoned since only more branched trees will now be 
generated and these also have to be in the list. The structures which were found 
from that parent graph (i.e. !, in any) are then stored in the reverse order of their 
generation in the file STRUCT, while their indices are stored in the file INDEX, 
and the next parent is inspected (restarting at Block 3 in fig. 3). The computing 
times are somewhat larger than those listed in the tables since the number of 
redundant graphs now generated is close to the number of parent graphs inspected. 
This simple and crude scheine fails for N > 14, since minimum codes (LINKCODEs) 
are no longer produced for the trees. Two 13-alkanes and five 14-alkanes are 
encountered where the string of • ! alternate. Thus, a tetradecane with a smaller 
LINKCODE that was previously generated was found from a parent tridecane with 
a larger parent LINKCODE. These tridecanes are presented on the left-hand side 
of fig. 10, together with their abridged LINKCODEs as generated by the GENLOIS 
program and the labels of their vertices. 

In all cases, one notes that by budding the vertices with larger labels first (in 
decreasing order of labels), one comes to bud the vertex indicated by a square in 
fig. 10. The new tetradecanes that are now produced are indicated on the right-hand 
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Fig. 10. Two parent tridecanes from which not all daughter tetradecanes 
are found if inspection is abandoned after encountering the first , 

side of fig. 10, together with their minimum codes and the labelling of  vertices 
derived therefrom. One notes that a shift of the label for vertex 1 has occurred and 
the new alkanes receive smaller codes than could have been derived from the parent 
on the left-hand side of fig. 10. Consequently, they must have been generated 
previously and their T1 should be in the list. Accordingly, a • is printed and that 
parent graph is not inspected further, although new tetradecanes, not previously 
generated (i.e. with LINKCODEs) could have been generated by budding the parent 
graphs at the vertices indicated by open circles. 

The result is that not all the tetradecanes are generated (one isomer is lost) 
and their codes are not minimal (i.e. canonical LINKCODEs), so that they cannot 
be used for the further generation of alkanes C15. 

However, all C15 isomers are produced if another modification is made, 
namely that the parent graph is abandoned for further inspection only after encountering 
two consecutive • ,  No theoretical basis exists for this modification and the computing 
times are now much larger than with GENLOIS. This scheme will probably fail 
when more than one shift of the centre of gravity (the label of vertex 1) can occur 
when passing from the parent graph to daughter graphs. 

The danger of a heuristic approach to programming is that one gets carried 
away by its simplicity and tries to optimize one's programs even after the initial 
goal has been attained. The fact that nature is always a little more complicated than 
initially pictured is part of its beauty. In adding these remarks, we try to follow 
some of the advice beautifully advocated by Hoffmann [37] regarding the presentation 
of chemical research with more personal involvement, together with the not so 
"positive" results. 
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6. Structure ordering by GENLOIS by means of the LINKCODE 

The ordering of structures has been a much debated problem of classical 
graph theory and heuristical [38], empirical [39] and mathematical [40] criteria 
have been proposed. The concepts of branching and molecular complexity have 
been defined on the basis of these ordering schemes. 

The ordering of trees according to their increasing LINKCODEs, i.e. the 
order in which they are generated by the GENLOIS program, is different to the 
previous orderings. It is similar to the ordering of Trinajsti6 [7,17] in the 
respect that the star graph is generated first (it has the smallest LINKCODE 
1, 1 . . . . .  1) and the linear alkane is generated last (as having the largest LINKCODE 
1, 2 . . . . .  N -  2). However, differences exist, starting with the ordering of hexanes, 
when 3-methylpentane (LINKCODE 1, 1, I, 2, 3) is ordered before 2-methylpentane 
(LINKCODE 1, 1, 1, 2, 5), whereas the N-tuple ordering [7] places 2-methylpentane 
before 3-methylpentane. It is debatable whether branching is reflected in either of 
these ordering schemes if heuristical approaches to molecular branching are considered. 
The differences in ordering are amplified as N increases. The largest differences are 
encountered for the heptanes, for 3-ethylpentane which is ordered as fifth by the 
LINKCODE but only as eigth by the N-tuple representation; for the octanes, for 3- 
ethylhexane ranked as twelfth by the LINKCODE and as seventeenth by the N-tuple 
representation; and for the thirty-five nonanes, 3-ethyl-3-methylhexane is ordered 
as tenth by GENLOIS, while by the Trinajsti6 algorithm it is ranked as sixteenth. 

A much closer ordering similarity to the LINKCODE ordering was encountered 
quite unexpectedly for the ordering advocated by Bertz [40], which is calculated by 
means of iterated line graphs (or graph derivatives). Bertz's procedure has the 
advantage of a mathematical clothing and is intuitively appealing. However, we do 
not agree that this ordering must reflect the "branching" of trees. Perhaps the term 
molecular complexity is better suited. The ordering of all structures up to and 
including the 18 octanes (of the 23 trees with 8 vertices) is with one exception the 
same, both in the order of increasing LINKCODES or in the order of the decreasing 
number of graph derivatives of a sufficiently high order (larger than four). The 
notable exception is encountered for 3-methylhexane (abridged LINKCODE 2, 3, 5), 
which is ordered before 2,4-dimethylpentane (abridged LINKCODE 2, 5, 5) by 
GENLOIS. When calculating the graph derivatives, these heptanes receive inversed 
rankings. For nonanes, only five inversions (out of 47 trees) were found, the largest 
ranking difference being encountered for 2,2,4,4,-tetramethylpentane, which was 
ranked as fourteenth by the LINKCODE and as tenth by Bertz's procedure. For 
decanes, the differences increase both in number and in rankings. However, this 
ordering similarity reflects some of the underlying connections between the two 
entirely different graph-theoretical approaches, and is worth further study. 

The ordering of structures by index V, detailed in a previous paper [21], 
parallels to some extent the LINKCODE ordering, the smallest V value being 
encountered for the most "branched" structure. This similar ordering can be exploited 
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to avoid the comparison with a very large number of TIs (V-values) that have to 
be stored on disk, thus increasing considerably the computing times due to the large 
disk-access times. Portions of a "chopped" INDEX FILE can be stored in the main 
memory of the computer, and comparison of structures can be made only with this 
"chopped" file and still generate correctly all structures. The 10359 hexadecanes (in 
table 1) were generated by memorizing only 5000 TIs. After the first 5000 new 
hexadecanes have been generated, thus filling the batch file, a "chopping" of the 
first 200 indices is done and the new indices that are found are appended to this 
file until it is again filled, where a new chopping occurs. No attempts have been 
made to optimize this "chopping" procedure, but it appears to be sufficient if about 
half of the number of structures on N + 1 vertices are memorized in the continuously 
chopped file. In other words, for the generation to proceed correctly two structures 
should not be ranked with a greater difference by index V and by the LINKCODES 
than the dimension of this chopped file. 

7. Conclusions 

Although the numerical results presented were known, the GENLOIS approach 
for generating acyclic structures has some advantages which stem from its ability 
to distinguish a certain type of vertex by means of its LOVI and its degree. "Customized" 
searches for a certain combination of vertices can be easily effected if this combination 
is known beforehand and appropriate counters are added to the program, which is 
then run from a complete set of parent trees. 

Another advantage of the present approach lies in the forwardness of the 
generation scheme (the redundant graph generation is minimized) and in the fact 
that not all the generated structures need to be saved (as their TIs), which allows 
computations to be performed using only the main memory of a personal computer. 
Disk-access operations are thus avoided and quite reasonably short computing times 
are obtained. 

The present approach is applicable also to cyclic structures. All monocyclic 
graphs with a limited number of vertices were obtained from the acyclic trees with 
the same number of vertices. These results will be presented separately [41 ], together 
with an attempt of compact coding. 
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